(8k+k^2-6)=-(-10k+7-2k^2)

Simple and best practice solution for (8k+k^2-6)=-(-10k+7-2k^2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (8k+k^2-6)=-(-10k+7-2k^2) equation:



(8k+k^2-6)=-(-10k+7-2k^2)
We move all terms to the left:
(8k+k^2-6)-(-(-10k+7-2k^2))=0
We get rid of parentheses
k^2-(-(-10k+7-2k^2))+8k-6=0
We calculate terms in parentheses: -(-(-10k+7-2k^2)), so:
-(-10k+7-2k^2)
We get rid of parentheses
2k^2+10k-7
Back to the equation:
-(2k^2+10k-7)
We add all the numbers together, and all the variables
k^2+8k-(2k^2+10k-7)-6=0
We get rid of parentheses
k^2-2k^2+8k-10k+7-6=0
We add all the numbers together, and all the variables
-1k^2-2k+1=0
a = -1; b = -2; c = +1;
Δ = b2-4ac
Δ = -22-4·(-1)·1
Δ = 8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8}=\sqrt{4*2}=\sqrt{4}*\sqrt{2}=2\sqrt{2}$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{2}}{2*-1}=\frac{2-2\sqrt{2}}{-2} $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{2}}{2*-1}=\frac{2+2\sqrt{2}}{-2} $

See similar equations:

| 4x-18=42 | | x/1.1+3.6=4.3 | | j+2j+j=8 | | 3w-14=40 | | 6x-20=2x+11 | | -3x2+9x+12=0 | | 3x^-2×+4=0 | | -94-3x=-11x+170 | | 8x-5x-x-2x+x=4 | | 5/y=y/45 | | 2^3x=10 | | 11/5x=1 | | 29=x/2-15 | | 18c-3c+3c-9c=9 | | 2+8x=7+3x | | 2=6−2n | | 13=5-8j | | 52p-74=39p-48 | | 14h-12h=10 | | 9p-8p=16 | | 3.8x-(-1-9.7)=26+13.3x | | (-1+a)/2=-2 | | 3j-5j=12 | | -25=3x+14 | | 9d=18 | | 12.9x-1=x+11 | | A÷3+8=16a= | | 7/5d=49 | | 8(n+3)-5=3n+8 | | 5x2+4=0 | | 6n-12=6+11(n+3) | | x−14=6−3(x− |

Equations solver categories